119 research outputs found

    Pattern formation in oscillatory complex networks consisting of excitable nodes

    Full text link
    Oscillatory dynamics of complex networks has recently attracted great attention. In this paper we study pattern formation in oscillatory complex networks consisting of excitable nodes. We find that there exist a few center nodes and small skeletons for most oscillations. Complicated and seemingly random oscillatory patterns can be viewed as well-organized target waves propagating from center nodes along the shortest paths, and the shortest loops passing through both the center nodes and their driver nodes play the role of oscillation sources. Analyzing simple skeletons we are able to understand and predict various essential properties of the oscillations and effectively modulate the oscillations. These methods and results will give insights into pattern formation in complex networks, and provide suggestive ideas for studying and controlling oscillations in neural networks.Comment: 15 pages, 7 figures, to appear in Phys. Rev.

    Structure and control of self-sustained target waves in excitable small-world networks

    Full text link
    Small-world networks describe many important practical systems among which neural networks consisting of excitable nodes are the most typical ones. In this paper we study self-sustained oscillations of target waves in excitable small-world networks. A novel dominant phase-advanced driving (DPAD) method, which is generally applicable for analyzing all oscillatory complex networks consisting of nonoscillatory nodes, is proposed to reveal the self-organized structures supporting this type of oscillations. The DPAD method explicitly explores the oscillation sources and wave propagation paths of the systems, which are otherwise deeply hidden in the complicated patterns of randomly distributed target groups. Based on the understanding of the self-organized structure, the oscillatory patterns can be controlled with extremely high efficiency.Comment: 16 pages 5 figure

    Advanced Research on cis-Neonicotinoids

    Get PDF
    cis-Neonicotinoids are a type of neonicotinoid, in which the nitro or the cyano group are in cis-configuration relative to heteroaromatic moiety, which show excellent activities against a range of insect species. This review covers cis-neonicotinoids with commercialization perspectives, structural optimization (phenylazoneonicotinoids and chlorothiazolyl analogues of Paichongding), modes of action studies, radiao-synthesis of Paichongding and Cycloxaprid, and photostability of neonicotinoids

    Pattern-Based Sensing of Short Oligodeoxynucleotides with Palladium–Dye Complexes

    Get PDF
    The colorimetric response of a sensor array composed of palladium–dye complexes can be used to identify different hexadeoxynucleotides and to distinguish mixtures of sequence-isomeric hexadeoxynucleotides

    Visualizing Drug Release from a Stimuli-Responsive Soft Material Based on Amine-Thiol Displacement

    Get PDF
    In this research, we developed a photoluminescent platform using amine-coupled fluorophores, generated from a single conjugate acceptor containing bis-vinylogous thioesters. Based on the experimental and computational results, the fluorescence turn-on mechanism was proposed to be charge separated induced energy radiative transition for the amine-coupled fluorophore, while the sulfur-containing precursor was not fluorescent since the energy internal conversion occurred through vibrational 2RS- (R represents alkyl groups) as energy acceptor(s). Further utilizing the conjugate acceptor, we establish a new fluorogenic approach via a highly cross-linked soft material to selectively detect cysteine under neutral aqueous conditions. Turn-on fluorescence emission and macroscopic degradation occurred in the presence of cysteine as the stimuli, which can be visually tracked due to the generation of an optical indicator and the cleavage of linkers within the matrix. Furthermore, a novel drug delivery system was constructed, achieving controlled release of sulfhydryl drug (6-mercaptopurine) which was tracked by photoluminescence and high-performance liquid chromatography. The photoluminescent molecules developed herein are suitable for visualizing polymeric degradation, making them suitable for additional “smart” material applications.</p

    A Fluorescent Sensor for Pyrophosphate Based on a Pd(II) Complex

    Get PDF
    A mixture of the Pd(II) complex [Pd(NO3)2(bipy)] (bipy = 2,2-bipyridine) and the fluorescent dye Methylcalcein blue (MCB) constitutes a chemosensing ensemble which can be used for the detection of pyrophosphate (PPi) by fluorescence spectroscopy. The sensor operates in buffered aqueous solution at neutral pH, and allows sensing PPi at low to mid micromolar concentrations with very good selectivity over other anions such as phosphate, acetate, nitrate, sulfate, chloride, and bicarbonate

    A photo-triggered and photo-calibrated nitric oxide donor: rational design, spectral characterizations, and biological applications

    Get PDF
    Nitric oxide (NO) donors are valuable tools to probe the profound implications of NO in health and disease. The elusive nature of NO bio-relevance has largely limited the use of spontaneous NO donors and promoted the development of next generation NO donors, whose NO release is not only stimulated by a trigger, but also readily monitored via a judiciously built-in self-calibration mechanism. Light is without a doubt the most sensitive, versatile and biocompatible method of choice for both triggering and monitoring, for applications in complex biological matrices. Herein, we designed and synthesized an N-nitroso rhodamine derivative (NOD560) as a photo-triggered and photo-calibrated NO donor to address this need. NOD560 is essentially non-fluorescent. Upon irradiation by green light (532nm), it efficiently release NO and a rhodamine dye, the dramatic fluorescence turn-on from which could be harnessed to conveniently monitor the localization, flux, and dose of NO release. The potentials of NOD560 for in vitro biological applications were also exemplified in in vitro biological models, i.e. mesenchymal stem cell (MSC) migration suppression. NOD560 is expected to complement the existing NO donors and find widespread applications in chemical biological studies
    • …
    corecore